
RAUSCHEN VON HALBLEITERN 

Angaben für Arsen und Antimon sind bis auf den 
Faktor 1,7, die von Indium bis auf den Faktor 2,1 
genau. 

Die Werte von M c A f e e u. a.4 konnten weder 
mit Kristallen, die Stufen verschiedener Leitfähig-
keit hatten (Schmelzen 5 und 6 in Abb. 6), noch mit 
solchen, die mit Hilfe von Hochfrequenzheizung 
hergestellt wurden, reproduziert werden. Die Ab-
weichungen bleiben daher ungeklärt. Sonst herrscht 
jetzt Übereinstimmung der Diffusionskoeffizienten 
nach beiden Methoden. Bis auf die Indium-Werte 
von F u l l e r 5 ergeben sich auch bei verschiedenen 
Autoren gleiche Diffusionskoeffizienten, die — so-
weit möglich — mit der radioaktiven Methode be-
stätigt wurden23. Die wahrscheinlichsten Werte sind 
in der Zusammenfassung am Anfang angegeben. 

Volumen-pn-Schichten gestatten Diffusionsmes-
sungen mit einem großen Konzentrationsgradien-
ten im Einkristall-Inneren, unabhängig von irgend-

welchen Oberflächenstörungen wie Bildung flüssi-
ger Legierung und mit einer Konzentration zwi-
schen 10~5 und 10"7 Atomteilen. Für kleine Diffu-
sionskoeffizienten (ab 10~13 cm2/sec) ist die geringe 
Eindringtiefe von der Oberfläche aus nur sehr feh-
lerhaft zu messen, wogegen Änderungen der Kapa-
zität infolge Diffusion bequem bestimmt werden 
können, so daß sich hier eine starke Überlegenheit 
der Impedanz-Methode ergibt. Die untere Meß-
genauigkeit ist bei den Volumen-pn-Schichten im 
wesentlichen durch den endlichen Gradienten 
vor Beginn der eigentlichen Diffusion bedingt, 
Durch günstigere Zuchtbedingungen (rasches Ab-
schrecken der Kristalle beim Ziehen) können aber 
auch hier noch weitere Fortschritte erzielt werden. 

Herrn Prof. Dr. K. Seiler möchte ich für die An-
regung dieser Arbeit sowie für sein Interesse danken, 
mit dem er die Untersuchungen verfolgt hat. 

Beitrag zum 1//-Gesetz beim Rauschen von Halbleitern 
V o n H . S C H Ö N F E L D 

Aus dem Standard-Laboratorium der Süddeutschen Apparate-Fabrik, Nürnberg 
CA. Naturforschg. 10a, 291—300 [1955]; eingegangen am 1. Dezember 1954) 

Das Stromrauschen von Halbleitern zeigt bekanntlich mit g u t e r Näherung ein 1//-
Spektralgesetz. Für das Zustandekommen dieses Gesetzes besteht bisher nur eine von 
van der Ziel und Sur din gegebene Erklärung, die drei, bisher nicht begründete An-
nahmen voraussetzt. Es wird gezeigt, daß Einzelvorgänge, die nach einem Zeitgesetz 
vom Charakter 1/Jft verlaufen, ebenso zu einem 1//-Spektrum führen. Nach der Hypo-
these von Montgomery bestehen die Einzelvorgänge in örtlichen Injektionen von Minori-
täten. Die Folgerungen, die sich ergeben, wenn man für diese Einzel Vorgänge einen \/y t -
Verlauf annimmt, werden hergeleitet und diskutiert. 

Bekanntlich bestehen hinsichtlich des elektri-
schen Rauschens zwischen metallischen Lei-

tern und Halbleitern grundsätzliche Unterschiede. 
Benutzen wir wie üblich als Maß für das Rauschen 
eines Widerstandes den zeitlichen Mittelwert des 
Quadrates der Rauschspannung Au 2 , die im Leer-
lauf bei Beschränkung des Spektrums auf das Fre-
quenzintervall A f auftritt, so läßt sich der Unter-
schied wie folgt charakterisieren: 

a) b e i m m e t a l l i s c h e n L e i t e r : A u2 ist bis zu 
sehr hohen Frequenzen unabhängig von der Fre-
quenz. Wird der Leiter von einem Gleichstrom I 
durchflössen, so ändert sich das Rauschen prak-
tisch nicht. Für sein Zustandekommen besitzen 
wir eine klare Vorstellung: Es wird verursacht 
durch die unregelmäßige Wärmebewegung der 

Elektronen und heißt daher thermisches Rauschen. 
Für die Richtigkeit dieser Vorstellung spricht, daß 
der hiernach berechnete Rausch wert 

A uth2 = -UcTRAf (Nyquist-Formel) (1) 
(k = Boltzmann-Konstante, T = absolute Tempe-
ratur des Widerstandes R) mit den gemessenen 
Rausch werten sehr gut übereinstimmt. 

b) b e i m H a l b l e i t e r : Ohne Stromdurchfluß 
herrscht ein Rauschen gemäß der Nyquist-Formel. 
Wird aber der Widerstand von einem Gleich-
strom I durchflössen, so tritt zusätzlich ein starkes 
Rauschen, das sog. Stromrauschen auf, charakteri-
siert durch A «9t2 . Da sich bekanntlich bei unregel-
mäßigen Vorgängen die Spannungsquadrate ad-
dieren, gilt für das Gesamtrauschen 

A v2 = A ?/th2 + A uat2. (2) 
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Dieses dem Halbleiter arteigene Stromrauschen 
wächst in guter Näherung proportional zum Qua-
drat des durchfließenden Stromes, ferner nimmt 
es mit der Frequenz hyperbolisch ab (1//-Gesetz) 

I-
A vst2 = const • -j- A f. (3) 

Für dieses Stromrauschen fehlt noch das vollstän-
dige physikalische Bild. Die Stromabhängigkeit 
nach Gl. (3) legt nahe, als Ursache der Rausch-
Spannung Schwankungen des Halbleiterwiderstan-
des A R anzunehmen, die in erster Näherung von 
der Stromstärke unabhängig sind (A vst =IA R). 

In letzter Zeit wurden zwei maßgebende Er-
kenntnisse gewonnen: 

1. L u n z e 1 hat gezeigt, indem er für Wider-
standskohle (Material als polykristallin) die Ab-
hängigkeit des Rauschens von den Abmessungen 
untersuchte, daß hierfür folgende Vorstellung in 
Übereinstimmung mit den Messungen ist: die äußer-
lich am Widerstand R meßbaren Widerstands-
schwankungen entstehen durch Überlagerung 
vieler, voneinander unabhängiger kleiner Wider-
standsschwankungen einzelner Bezirke, die gleich-
mäßig über das Volumen des Halbleiters verteilt 
sind (Volumeneffekt). Aus diesem Bild folgt (die 
Berechnung ist, zugeschnitten auf die hier be-
nutzte Form, im Anhang I angegeben): 

A y2 v R J x2 
A R2 = ; 0 , mithin A u2 = — 7 - S2 v R. (4) x- q- y." ' 

Hierbei bedeuten * = Leitfähigkeit, q = Quer-
schnitt des zylindrisch angenommenen Körpers 
vom Widerstand R, v = Volumen eines Bezirkes, 
A /i — Leitfähigkeitsschwankung, S = Dichte des 
durchfließenden Gleichstromes. 

2. M o n t g o m e r y 2 hat durch Bestimmung der 
Korrelation der Rauschspannungen an verschie-
denen Stellen des Halbleiters gezeigt, daß die ört-
lichen Widerstandsänderungen an die im Halbleiter 
in Minderheit vorhandenen Ladungsträger (= Mi-
noritäten) geknüpft sind. Die Rauschbezirke be-
wegen sich in Laufrichtung und mit der Geschwin-
digkeit der Minoritäten, ihre Längsausdehnung 
stimmt mit dem von der Stromdichte abhängigen 
Lebensweg der Minoritäten überein. 

Bei dem von ihm benutzten einkristallinen Ger-
manium war die Rauschhöhe stark von der Ober-

1 K. Lunze , Diss. T. H. Dresden 1952. 
2 H. C. M o n t g o m e r y , Bell Syst. Techn. J. 31. 950 

[1952]. 

flächenbehandlung abhängig. Bei geätzter Ober-
fläche des gleichen Probekörpers lag das Rauschen 
etwa um eine Größenordnung oder mehr höher als 
bei sandgestrahlter. Offenbar herrscht hier, wenig-
stens bei geätzter Oberfläche, ein Oberflächen-
effekt vor. 

Montgomery stellte auf Grund seiner Versuchs-
ergebnisse folgende Hypothese auf: Die das Strom-
rauschen hervorrufenden Widerstandsänderungen 
des Halbleiters entstehen durch örtliche Leitfähig-
keitsänderungen, und diese wiederum werden durch 
Injektion von Minoritäten verursacht. Da diese 
Hypothese das den Halbleitern arteigene Strom-
rauschen zurückführt auf eine den Halbleitern 
arteigene, allgemeinere Eigenschaft , den Transistor-
effekt ( = Fähigkeit, die Leitfähigkeit örtlich zu 
ändern durch Injektion von Minoritäten), sehen 
wir darin eine zu dem experimentellen Befund zu-
sätzliche Bekräftigung für ihre Richtigkeit. Wir 
werden sie daher den weiteren Betrachtungen zu-
grunde legen. 

Noch ungeklärt bleibt das Bild für die einzelne 
örtliche Leitfähigkeitsänderung in jedem Bezirk 
(bezeichnet im kommenden als Einzelvorgang). 
Ein Lösungsweg besteht von der mathematischen 
Seite her: Das Stromrauschen, das die Überlage-
rung vieler Einzelvorgänge ist, besitzt das 1 //-
Spektrum. Offenbar muß es möglich sein, aus die-
sem Spektralverlauf den zeitlichen Verlauf des 
Einzelvorganges g (t) herzuleiten. Ist dieser Zeit-
verlauf bekannt, so eröffnen sich vielleicht weitere 
Schlußfolgerungen. Die bisher einzige Erklärung 
für das Zustandekommen des 1//-Gesetzes haben 
unabhängig voneinander v a n der Z i e l 3 und Sur -
d i n 4 gegeben. Sie müssen hierzu drei Vorausset-
zungen machen: 

1. Die Zeitverläufe klingen nach einer e-Funk-
tion ab, 2. die Zeitkonstanten der einzelnen Be-
zirke müssen verschieden sein und einem hyper-
bolischen Verteilungsgesetz genügen. 3. Diese hy-
perbolische Verteilung muß zwischen zwei Grenz-
werten rx . . . To gelten, für die coTx < 1 < cor2 ist. 

Für alle drei Annahmen gibt es bisher noch keine 
Erklärungsmöglichkeiten. Es sei daher untersucht, 
ob es tatsächlich keine Funktion g (t) gibt, die ohne 
so komplizierte Zusätze zum 1//-Spektrum führt. 
Wir machen nur die vereinfachende, aber einleuch-

3 A. van der Z ie l , Physica 10, 359 [1950]. 
4 M. Surdin, J. Phys. et Rad. 12, 777 [1951]. 



tende Annahme, daß die Einzelvorgänge, die alle 
an den verschiedenen Orten im Halbleiter demsel-
ben Zeitgesetz genügen sollen, sich in der Größe 
um einen Proportionalitätsfaktor unterscheiden 
dürfen. Dann lassen sich hinsichtlich des Rau-
schens alle diese in der Höhe verschiedenen Ein-
zelvorgänge durch einen mittleren Einzelvorgang 
ersetzen. 

Wir wollen nicht unerwähnt lassen, daß auch 
Abweichungen vom exakten 1//-Gesetz beobachtet 
wurden (sowohl hinsichtlich des Exponenten als 
auch gewisse Unregelmäßigkeiten im Spektralver-
lauf, s. z. B. M o n t g o m e r y 2 , Bild 5). Offenbar 
aber kann man das 1//-Gesetz als gute erste Nähe-
rung betrachten, und wir wollen uns darauf be-
schränken. 

1. Der Zeittyp des Einzelvorganges, 
der zum 1//-Gesetz führt 

a) A l l g e m e i n e r Z u s a m m e n h a n g z w i s c h e n 
E i n z e l v o r g a n g und R a u s c h q u a d r a t f ü r ein 
b e s t i m m t e s F r e q u e n z i n t e r v a l l 

Entsteht ein Rauschen A x2 aus dem Überlagern 
vieler, unabhängig voneinander verlaufender, 
gleicher Einzelvorgänge, wobei im Mittel 2 Einzel-
vorgänge in der Zeiteinheit im betrachteten Objekt 
geschehen mögen, so berechnet sich (s. Anhang II) 

2 (A2 + B2) zAf, (5) 

wobei A = J g (t) cos cot dt] B — J g (t) sin cot dt. 
o o 

Als Sonderfall folgt hieraus für den Verlauf des 
Spektrums im Bereich tiefer Frequenzen: Er-
streckt sich der Einzelvorgang über eine endliche 
Zeitdauer Te, so ändern sich für alle Spektralfre-
quenzen /, deren zugehörige Periodendauer ljf groß 
gegen Te ist (also für 0 < / < /grenz = 1 /Te), die sin-
bzw. cos-Glieder während der Integrationszeit Te 

praktisch nicht, lassen sich also in Gl. (ö) vor die 
Integrale ziehen. Somit wird 

00 
für 0 < / < / g r e n z : A x2 = 2 [J g (t) dt]2 zA f. (6) 

o 
Da das Integral / nicht mehr enthält, verläuft also 
für diesen Bereich tiefer Frequenzen (0 . . . /grenz) 
das Frequenzspektrum horizontal. 

b) D e r v o r g e s c h l a g e n e E i n z e l v o r g a n g 
Um das 1//-Gesetz zu liefern, muß nach obigem 

gelten: 
A2 + B2 = const2//. 

Folgende drei Fälle, d. h. Grenzannahmen für A 
und B, seien geprüft: 

const 
Vf ' . „ const/K2 A =• 

B = 
B = 0 Vf 

A 

B 

0 , 
const 

~TT 
Durchsucht man daraufhin die Integraltafeln5, so 
findet man nur für den mittleren Fall eine Funk-
tion g (t): 

1 f 1 • -yj cos cot dt = —— sin. cot dt 
0 0 

[ 2 co 2 Vf ' 
(7) 

Ergebnis: Der Verlauf gemäß l\V~t führt zusätzlich 
zu der van der Z iel-Surdinschen Lösung ohne 
erschwerende Nebenbedingungen zum ljf-Gesetz. 

Hervorgehoben sei aber, daß die gestellte Auf-
gabe, zu einem Spektrum den zugehörigen Typ des 
Einzelvorganges zu ermitteln, nicht eindeutig ist. 
Denn in das Spektrum geht von den Fourier-Kom-
ponenten nur die Amplitude (A2-\-B2) ein, nicht 
aber deren Phasenlage (BjA). So erklärt es sich, 
daß z. B. die beiden grundverschiedenen Funk-
tionen 

gx(t)=ye-^, g.2 (t) = ^ , 

deren zugehöriges Spektrum ist 

A x2 = 2 y2 
1 + (cor)2 

zAf, Ax2= 2y 2 |Ci 2 ( cor 

für co r > 1: 
— const, 
Ax 2 — — A 

— Si (co T)| \ ZA f 

für co T > 1: 
——- const, 
Ax 2 = ^ 

für einen Teil des Spektrums — und wir können 
experimentell immer nur einen Teil erfassen — den 
gleichen Verlauf zeigen (s. Anhang l i l a , b). 

Man kann aber mit Sicherheit sagen, je weiter 
der Spektralbereich ist, über den eine angenom-
mene Einzelfunktion mit dem tatsächlich vor-
handenen übereinstimmt, um so größer ist die 
Wahrscheinlichkeit für die Richtigkeit der An-
nahme. Da die Gültigkeit des 1//-Gesetzes von etwa 
10 - 2 Hz 6 bis über einige 100 kHz experimentell 
nachgewiesen wurde, besteht eine gewisse Wahr-
scheinlichkeit für den IjV t -Einzelvorgang. Wir 
wollen deshalb weitere Folgerungen untersuchen. 

5 Z.B. Integraltafel W. Gröbner u. N. H o f r e i t e r , 
Springer 1950, Gl. 333/12. 

6 D. K . B a k e r , J. Appl. Phys. 25, 922 [1954]. 



2. llVt -ähnliche Verläufe ohne Unendlichkeitsstelle 

Zunächst stört beim angenommenen l/]f t -Ein-
zelverlauf die Unendlichkeitsstelle bei t — 0, die in 
Wirklichkeit sicher nicht vorhanden ist. Daher 
seien, um ein Gefühl der Sicherheit zu bekommen, 
zwei der 1/]' t -Funktion ähnliche Funktionen un-
tersucht, die dieses Unendlichwerden vermeiden. 

1 — e-tlr 

a) 9(t) = 7 ft -

Diese Funktion beginnt im Ursprung, läuft bei 
t— 1,26 T über ein Maximum der Höhe 0,64 y und 
fällt für t> 3T wie lj]rt ab. Das zugehörige Spek-
trum (s. Anhang II I c) hat die Form 

r1 1 
= 71T + \ 0) T A x 1 F + (cur)2 

Y v\ + (tor)2 +1 + V n - (wry- — i 
KCOT V 1 + (COT)2 

^2y2zAf. 

(8 a) 

i T —X-

y ]/r*t' 

V 

V s 
1 \ 

zu Frequenzen von über 100 kHz den 1//-Gang 
aufweisen. Bei Stoffen mit sehr langer Lebens-
dauer müßte freilich schon bei nicht so hohen Fre-
quenzen eine Abweichung beobachtbar sein. 

b) g (t) -
fr + t 

Diese Funktion beginnt bei yj\r und fällt von dort 
zeitverschoben wie 1 \Y t ab. Das Spektrum (s. An-
hang I l l d ) hat die Form 
—— 2 (T 1 12 
Ax2= — 

wobei 

[ [ 4 — C ( « > T ) ] 

S (cor 'FW2 

C (z) = dz; S (z) = 

zAf, (8 b) 

dz 

104 

10" 
• CJ (für T - 10/jsJ 

Abb. 1. 

Wie Abb. 1 (statt Yb muß es in Abb. 1 zweimal 
Yt heißen) in Übereinstimmung mit der Nähe-
rungsberechnung (Anhang) zeigt, deckt sich das 
Spektrum für den Bereich cor < 1 mit dem des 
1/Yt-Vorganges (d .h . Abfall wie 1//); für cor> 1 
stürzt es dann wesentlich steiler ab. Da es ver-
nünftig erscheint, die Zeiten r von Größenordnung 
der Lebensdauer der Minoritäten anzunehmen 
(dann ist die Leitfähigkeitsänderung, falls die 
Emission in noch kürzerer Zeit einsetzt, quasi-
stationär), also t & 10 - 5 s, würde das Spektrum bis 

Y2TZZ ' w " J ][2nz 
o ö 

die Fresnelschen cos- bzw. sin-Integrale7 bedeu-
ten. Wie aus Abb. 1 und der Rechnung im Anhang 
ersichtlich ist, deckt sich auch dieses Spektrum 
für « T < 1 mit dem des 1 ] t -Verlaufes und fällt 
oberhalb cor>\ rapide ab. 

Hätten die Spektren von a) und b) im Bereich 
(OT<1 nicht den 1//-Gang ergeben, so müßte man 
folgern, daß ein Einzelvorgang, der in den Haupt-
zügen nach einem \jY~t -Verlauf geschieht, falsch 
ist. Somit läßt sich das Ergebnis von a) und b) als 
eine Bekräftigung unserer Annahme Merten. 

3. Folgerungen aus der Ausdehnung 
des Spektrums und dem 1/Vt -Verlauf 

a) F o l g e r u n g e n aus der A u s d e h n u n g d e s 
1 If - S p e k t r u m s 

Da das 1//-Gesetz hinab bis zu mindestens 
10~2 Hz besteht, also für diese Frequenzen der 
Verlauf noch nicht in den horizontalen Teil über-
geht, folgt nach Gl. (6) für die Dauer des Einzel-
vorganges — worauf schon hingewiesen wurde8 

Tg > 100 s, (9) 
d. h. die Dauer des Einzel Vorganges erstreckt sich 
über Minuten. Im Gegensatz dazu betragen die 
Lebensdauern der Minoritäten Mikrosekunden. Der 
Einzelvorgang kann somit nicht an eine einzelne 
Minorität gebunden sein. Diese Diskrepanz läßt sich 
zwanglos überbrücken, wenn man nach Montgo-
mery annimmt: Der Einzelvorgang ist verknüpft mit 

7 J a h n k e - E m d e , Funktionentafeln,TeubnerLeip-
zig 1938. 

8 Z. B. H. B i t te l u. L. S to rm, Phys. Verhandl. 5, 
10 [1954]; Physiker-Tagung Goslar. 



dem Emissionsvorgang einer Schar von Ladungsträ-
gern. Die Minoritäten werden also von jeder Einzel-
stelle über die Dauer von vielen Sekunden emittiert. 
Die Rechnung würde erlauben, da das Vorzeichen 
der sich ändernden Größe in das Endergebnis nicht 
eingeht, statt der Emission eine Absorption (an 
Eangstellen) von Ladungsträgern anzunehmen. 
Aber für die Emission sprechen eindeutig a) die 
Versuche von M o n t g o m e r y , b) die Tatsache, daß 
bei Gleichrichtern das Rauschen im Sperrbereich 
besonders hoch oberhalb derjenigen Spannung ist, 
von der ab der Strom stark ansteigt, d. h. ein Ver-
mehren der Ladungsträger einsetzt. Für den Ein-
zelvorgang bei n-leitendem Material wird daher 
der Ansatz gemacht, daß die Injektion der Mino-
ritäten und somit ihre mittlere zusätzliche Kon-
zentration im Bezirk [Ap) nach einem 1 \\ t - Verlauf 
geschehe. 
Da zwischen der Konzentrationserhöhung der Mi-
noritäten und der dadurch entstehenden örtlichen 
Leitfähigkeitserhöhung zl x' die Beziehung be-
steht9 

A x' A v l\ + / < M i n \ __ 
\ /'Maj / 

AV 
«, (10) 

( / 'Min ' / 'Maj = Beweglichkeit der Minoritäten, Ma-
joritäten), 

/"Min wobei a = 1 + 
/'Maj 

setzen wir als Grundgleichung für die weiteren 
Betrachtungen an: 

Ax' Ap y 
—— — a —— = ~yj~ • (Grundannahme) (11) 

Also auch die örtlichen Leitfähigkeitsänderungen 
nehmen hiernach nach einem l/Yt-Verlauf ab. 

b) Fo lgerungen aus dem l /Yt -Ver lauf für den 
E i n z e l v o r g a n g 

Der ljY ^-Verlauf ist unter den geläufigen Zeit-
gesetzen offenbar nur bekannt als Lösung des-
jenigen Differentialgleichungstypes, der einen ört-
lichen Ausgleich (von Energie oder Materie) bei 
flächenhafter Quelle beschreibt. Für das Beispiel der 
Diffusion ( = Materieausgleich) lautet, wenn p — 
Konzentration, r = Lebensdauer, D = Diffusions-
konstante, die Differentialgleichung bekanntlich: 

8P V n . 

Die Lösung für Diffusion nur in ar-Richtung mit 
der Grenzbedingung, daß für t— 0 eine auf der 
Ursprungsfläche £ = 0 angehäufte Teilchenzahl P 
zu diffundieren beginne, ist10 : 

P 
P -t/r e—x"Hi)t 

F K4 TI D t 

Für die Diffusion beim Zylinder- bzw. Kugelpro-
blem steht im ersten Term bekanntlich statt 1/<1/2 

der Ausdruck 1 jt bzw. l/£3/2. 

-ui (für r-IOfis; 
Abb. 2. 

»J. R. H a y n e s u. 
091 [1949]. 

W. Shock lev , Phys. Rev. 75, 

Da gemäß Abb. 2 weder der l/<-Verlauf (Rech-
nung s. Anhang I l l d ) noch der l/£3/2-Verlauf (Rech-
nung s. Anhang I l l e ) zu einem 1//-Gesetz für das 
Spektrum führen, drängt sich die Vorstellung auf, 
daß der Emissionsvorgang mit Geschehen an Flä-
chen verknüpft sein muß. Am einfachsten ist dann 
anzunehmen, der Emissionsvorgang geschieht an 
kleinen Flächen (Oberflächenteilen, Korngrenzen). 
Die Tatsache, daß der sog. Flicker-Effekt des Emis-
sionsstromes von Oxydkathodenoberflächen eben-
so ein 1//-Spektrum besitzt, scheint diese Annahme 
zu bekräftigen, da dort offenbar auch kleine Ober-
flächenteile den Emissionsvorgang beeinflussen. 
Eine Erklärung für das Zustandekommen eines 
l/Yt-Verlaufes der Emission kann jedoch z. Z. 
nicht gegeben werden. 

5. Die Rauschgleichung 

Im kommenden sei der Zusammenhang zwi-
schen der Rauschspannung und den charakteri-
stischen Größen des Einzelvorganges ermittelt, 
d. h. die sog. Rauschgleichung. 

Es läßt sich für einen Widerstand R — 1 /xA 
(A — Faktor, der seine Form kennzeichnet, für 

10 Z. B. B. Rau le , ,,Die Mathematik des Naturfor-
schers und Ingenieurs" Hirzel, Leipzig 2. Aufl. 1945, 
Bd. VI. 



Zylinderkörper also A = l/q; x nach außenhin wir-
kende, mittlere Leitfähigkeit) wohl am allgemein-
sten aus der sog. Ollendorflf-Formel für Masse-
kerne (s. Anhang IV) folgendes herleiten: Werden 
einem Widerstandskörper vom Volumen V — zu-
nächst sei nur ein solcher mit einer Trägersorte be-
trachtet — zusätzlich A P Ladungsträger zugeführt, 
so erhöht sich seine mittlere Leitfähigkeit um 

i A P A x = e [I. 

Mithin ist völlig gleichgültig, ob die zusätzlichen 
Träger eng geballt oder weit verteilt sind. Diese 
Beziehung gilt freilich nur bei kleinen Leitfähig-
keitsänderungen, was in unserem Fall wenigstens 
für den längsten Teil des Emissionsvorganges zu-
trifft. 

Somit folgt für den in Gl. (11) gemachten, sich 
auf die einzelne, örtliche Leitfähigkeitsänderung 
A x ' beziehenden Ansatz, da nach außen hin nur 
der Einfluß auf die Zweipolklemmen, also auf x 
maßgebend ist: A x wird offenbar dadurch hervor-
gerufen, daß durch Dissoziation neutraler Gitter-
stellen zusätzliche Träger, also Minoritäten A P 
und Majoritäten Zl N = AP geschaffen werden. Mit-
hin ruft ein Einzel Vorgang (A x') am Halbleiter-
zweipol die wirksame Leitfähigkeitsänderung A xe 

hervor (e = Index für Verknüpfung mit Einzel-
vorgang) : 

AP AN Apv 
A = ~ y ~ e / / M a j "I y ~ e / 'Min = y e / ' M a j a 

= (XX-
Apv 
nV 

mit Gl. (11) A xD = 
xvy 
Vft 

Durch den Einzelvorgang entsteht eine Wider-
standsänderung 

A xe l vy 
ABD xq2ft 

Bei der Bewertung nur der Frequenzen im Be-
reich Af folgt nach Gin. (5) und (7) für die Über-
lagerung von z Einzelvorgängen in der Zeiteinheit 
die Widerstandsschwankung: 

,2,,2 
A R2 = 

v'yi 

*2qlf 
zA f. (13) 

Bei Zugrundelegen eines Volumeneffektes (Bezirke 
gleichmäßig über das Volumen V = q-l verteilt, Zahl 
der Bezirke = V/v, £ = Zahl der Einzelemissionen 
in Zeiteinheit im gleichen Bezirk) ist 

Also ergibt sich für die gesamte Widerstands-
schwankung : 

X ö i 2 f" RAf A R- = y2£ v 
mithin 

^ wst2 = y2^ v 

xq2f ' 
RS2 Af 

(14) 

(Rauschgleichung für Volumeneffekt), 

somit, da das Stromrauschen als Vielfaches p' des 
thermischen Rauschens ausgedrückt wird: 

2 ±kTxf 
A u it- = p'±kT RAf, y2Cv = S2 .(15) 

Unter Zugrundelegen eines Oberflächeneffektes (Be-
zirke mit der Emissionsfläche a2 = AF gleichmäßig 
über die Oberfläche 0 = U • l des zylindrischen 
Körpers verteilt, U = Umfang des Körpers) ist 

z = AF 
Also ergibt sich für die gesamte Widerstands-
schwankung mit Gl. (13) 

U R2 A f 
A R2 = y2£va' . 2, 

(a' = Tiefe eines Bezirks), 
, UR2S2Af 

mithin A u3t2 = y2£va 

also y L, v a = 

lf 
p' 4 kTlf 

(16) 

(17) 

(18) U R S 2 ' 
In beiden Rauschspannungsgleichungen ergibt sich 
die Proportionalität mit S2/f. 

(12) 6. Zahlenwerte der Kenngrößen des Einzelvorganges 

Leider liefern die Meßergebnisse gemäß Gl. (15) 
bzw. (18) nicht die interessierende Größe y allein, 
sondern das Produkt y2£v bzw. y2£va' mit weite-
ren Unbekannten. Die Auswertung ist nur für die 
Versuchsergebnisse von Lunze nicht allzu unsicher, 
da bei der untersuchten Widerstandskohle offen-
bar ein Volumeneffekt vorliegt und auch eine grobe 
Abschätzung des Elementarvolumens v möglich ist. 

a) M e ß e r g e b n i s s e des P r o d u k t e s y2£v f ü r 
W i d e r s t a n d s k o h l e : Nach Umformung von 
Gl. (15) auf y2Cv = p' 4 kTfql2!I2R2 folgt für ver-
schiedene Proben für 7 = 1 0 m A ; i? = 4 k ß ; der 
Mittenfrequenz / = 4,8 kHz und Q — spez. Wider-
stand = 3 • 10-3 Q cm: 

Probe l = 0,7 1,7 1,9 3,8 5,2 cm 
p'mittel = 250 80 55 10 7 

y2C v = 1,8 3,4 2,8 3,4 2,8 -10-20 cm3 



mithin y 2 £ v ^ 3-10-2 0 cm3. (19) 

b ) A b s c h ä t z u n g v o n £: Da der Einzelvorgang 
[s. Gl. (9)] mindestens 100 sec dauert, folgt 

C < lO-2 s - 1 . (20) 

c) A b s c h ä t z u n g v o n v: Diese Abschätzung 
ist sehr unsicher. Da die von Lunze benutzten 
Kohleschichtwiderstände eine Dicke von einigen 
jii hatten, muß sein a < 10 - 4 cm, also 

v < 10 -12 cm3. (21) 

d) A b s c h ä t z u n g v o n y : Aus Gin. (19) . . . (21) 
folgt 

y > 0,5-10~3 s1/2, mithin 
A 

> 
0,5 

(22) Vt/fis ' 
Die örtliche Leitfähigkeitsänderung im Anfangs-
stadium einer Emission, d. h. nach etwa der Le-
bensdauer der Minoritäten (einige // s), beträgt 
grob 100%. Mithin ist die Konzentration der in-
jizierten Minoritäten etwa gleich der der Majori-
täten. Die Einzelemissionen würden hiernach also 
sehr intensiv sein. 

e) A u s w e r t u n g der V e r s u c h e v o n M o n t -
g o m e r y : Da für das benutzte Material (einkristal-
lines Germanium) unbekannt ist, wie weit ein Vo-
lumen- oder Oberflächen-Effekt vorliegt, ferner da 
für die Abschätzung von v kaum Anhaltspunkte 
gegeben sind, ist eine Auswertung ( M o n t g o m e r y 
1. c., Bild 6, 8 Proben) nur als grobe Aussage über 
den Bereich der Größenordnung zu werten: 

Bei angenommenem Volumeneffekt: 

y2Cv = 5 . . . 230 -10-19 cm3 

Mittelwert: = 75 • 10~19 cm3. 

Bei angenommenem Oberflächeneffekt* 

y2Cv = 7 . . .280-10"19 cm° 
Mittelwert: = 90 • 10-19 cm3. 

Das überraschende Ergebnis, daß sich für Volu-
meneffekt und Oberflächeneffekt etwa die gleichen 
Werte berechnen, würde besagen,daß beide Effekte 
offenbar in gleicher Höhe am Gesamtrauschen be-
teiligt sind. Dies erscheint nicht völlig ausgeschlos-
sen, da das Material eine solche Oberflächenbe-
handlung erfuhr (Sandstrahlen), daß das Rauschen 
am kleinsten war. 

* Hierbei ist die Tiefe der Bezirke a' von Größe des 
Lebensweges a' der Minoritäten angenommen, 
L'=a= 10-2 cm. 

Die Größe y würde bei gleich groß angenomme-
nem Elementarvolumen wie bei Lunze ( v < 1 0 - 1 2 

cm3) erstaunlicherweise nur um etwa eine Größen-
ordnung größer sein. Da v beim einkristallinen Ma-
terial sicher größer ist, vermindert sich offenbar 
noch der Unterschied. 

7. Betrachtungen zur unteren Frequenzgrenze 
des 1//-Verlaufes 

Der Einzelvorgang hat offenbar dann sein Ende 
(nach Zeit Te), wenn die Einzelemission nach dem 
l/Yt-Verlauf bis auf einen Träger abgeklungen, d .h. 
nur noch ein Minoritätenträger im zugehörigen 
Bereich vorhanden ist, also wenn 

(Ap)Tev=l mit Gl. (11) Te n2 y2 v2 (23) 

Nach Einsatz der grob geschätzten Zahlenwerte 
der Gin. (21), (22) folgt, wenn man f ü r n = 101 7cm - 3 

ansetzt: 
7 T e ^ 1 0 - 3 s . (24) 

Mit Gl. (6) würde hiernach die untere Frequenz-
grenze des 1//-Spektrums bei 10~3 Hz liegen. Nach 
dem Experiment ist sie unterhalb 10 - 2 Hz. 

8. Die Anfangsstromdichte bei einem Einzelvorgang 

a) G r o b e A b s c h ä t z u n g aus d e n o b i g e n 
K e n n g r ö ß e n 

Die Stromdichte A S an der Grundfläche A F 
(z :=0) des Bezirkes v = AF-a' läßt sich aus den 
Verhältnissen im stromlosen Zustand, d. h. wenn 
nur Diffusion vorliegt, berechnen 

AS=—ED 
Idzlp \ 
\ dt Jx= 0 

(25) 

Da nach etwa der Lebensdauer der Minoritäten 
die Konzentration im Bezirk örtlich gemäß 

(Ap)x=(Ap)x = 0e~xlL (26) 

abfällt, und da die bisher angegebenen Werte A p 
über das Bezirksvolumen gemittelte Werte waren, 
folgt 

{Ap)x = 0 = Ap a 
L < 2 7 > 

Nach Gin. (25) . . . (27) und (11) ergibt sich somit 
für die Anfangsstromdichte AS&, d. h. die Strom-
dichte nach der Zeit r, wenn man L2 = DT benutzt, 

A S a 
1,0 e a' ny 

dr3 '2 (28) 



Eine zahlenmäßige Abschätzung ist nur hinsicht-
lich des Größenordnungsbereiches möglich, da für 
das Material von Montgomery y, für das Material 
von Lunze r sehr unsicher ist. Es würde sich er-
geben für das ersterwähnte Material mit einem 
mittleren einige ß c m , also n = 10 1 5 cm - 3 , 
wenn man a' % L— 10~2 cm und für y entsprechend 
den Bemerkungen am Ende von Abschnitt 6 den 
Wert aus Gl. (22) einsetzt bzw. für das zweit-
erwähnte Material w=101 7 cm - 3 , a' — a= 10 - 4 cm, 
r f̂ 1 jas 

A A (nur Größenordnungs-
Z ^ a ~ 3 - 1 0 - 2 — ; bzw. 1 — 1 • , , * a cm2 cm2 bereich zu werten!). 

(29) 
b) A b s c h ä t z u n g aus d e m F l i c k e r - E f f e k t 

Offenbar ist gerechtfertigt, den Flickereffekt bei 
Oxydkathoden, da er ebenso das 1//-Spektrum 
zeigt, auch auf einen die Emission kleiner Ober-
flächenbereiche AF nach einem \j\t -Verlauf be-
einflussenden Vorgang zurückzuführen. Mit dem 
Ansatz für den Einzelstrom 

a i = j t 
(30) 

berechnet sich für die Kathodenfläche F nach 
Gin. (5) und (7) der Rauschstrom zu 

y'2 p 
(31) f AF 

Er wird als Vielfaches p" des Rauschens für den 
Sättigungsstrom i8 bei metallischer Kathode an-
gegeben : 

Ai"2 = p" 2 eis Af. 

Zahlen werte, entnommen dem Buch R o t h e -
K l e e n 1 1 sind: 

p" — 102; i& = 2 m A ; / = 103 Hz . 

Für die in das Ergebnis eingehende Elementar-
fläche A F besitzen wir leider keine Anhaltspunkte. 
Für AF=(l/i)2 würden folgen 

/ = 10-11 As1'2 

und für die Anfangsgrößen nach einigen JL( S: 

A 10~8 A ; A Sa ^ 1 (32) 

Anhang 

I. Her le i tung der Gl. (4) 
Der Körper mit dem Widerstand R sei als Zylinder 

mit dem Querschnitt q vorausgesetzt und in Elemen-
tarzellen vom Volumen a3 = v unterteilt. nq Zellen sollen 
in einer Quersclmittsscheibe liegen, nl Scheiben sich 
übereinandertürmen. Die Schwankungen z. B. des 
Leitwertes 1 A x2 werden für die Zwischenrechnung 
abkürzend geschrieben als öx. Wir benützen das 
Schwankungsgesetz: Gesamtschwankung bei Über-
lagerung von n Einzelschwankungen dx ist Vndx. 
Leitwertschwankung einer Zelle: d g = ö x - a; 
Leitwertschwankung einer Scheibe: <5(7SCh= VnQög; 
Widerstandsschwankung einer Scheibe: 

ö Gscii '5 x 

Widerstandsschwankung des Zylinders: öR = Yrii öRsuh* 

also A R2 = 
A x2 A x2 R v 

x3 q2 

II. Her le i tung der Gl. (5) * 
Wir benutzen die elegante, im Buch von Dosse 

und Mierdel1 3 angegebene Methode und erweitern 
sie auf den allgemeineren Fall, daß die Funktion für 
den Einzelvorgang g (t) während der Periode der Fou-
rier-Schwingungen sich ändert. Zunächst wird ein Ein-
zelvorgang betrachtet und wir tun so, als würde er sich 
periodisch, jeweils nach der Zeitdauer Tn (7'0 wird spä-
ter beliebig vergrößert) wiederholen. Die Spektral-
linien haben dann gemäß der Fourier-Zerlegung die 
Amplitude: 

T„ T0 
2 f 

-— I g (t)smna>0t dt. 
J- n I 

un = \ g (*) cos nio0 t dt; br 

o o 
Da die Spektrallinien den gegenseitigen Frequenzab-
stand 1 /T0 haben, entfallen auf den Spektralausschnitt 
Af (T0 hinreichend groß angenommen) Af-Tn Linien. 
Also Rauschanteil zljr2einzel dieses Einzelvorganges in 
Af (Anwendung des Schwankungsgesetzes): 

A x2, 
aj + br 

einzel — Af-T0 

(ein Vorgang während T{); A x2 = Quadrat des Effek-
tivwertes). 
In der Zeiteinheit mögen z Einzelvorgänge geschehen, 
also Gesamtrauschen 

Ax2 d * 2einzel' « T0 (z-T0 Vorgänge während T0) 
T0 T0 

2 {[J g (t) cos n co01 d£]2 + [Jg (t) sin na>01 d<]2}. 
o ' o 

11 H. R o t h e u. W. K leen , Elektronenröhren als 
Anfangsstufenverstärker, Akad. Verl. Ges. Leipzig, 
2. Aufl. 1944, Fig. 200. 

* Eine Ableitung ohne experimentelle Überprüfung 
s. auch bei Hett ich 1 2 . 

12 A. H e t t i c h , Frequenz 4, 14 [1950]. 
13 J. Dosse u. G. Mierdel , Der elektrische Strom 

im Hochvakuum und in (rasen, HirzelLeipzig, 2. Aufl. 
1945, S. 258 ff. 



Lassen wir die sich herausgehobene Periodendauer 
entsprechend dem tatsächlichen Verhalten (die Einzel-
vorgänge wiederholen sich nicht) gegen oo gehen, so 
wird das Linienspektrum zu einem kontinuierlichen 
und nco() wird zur gleitenden Frequenz co, somit folgen 
Gin. (5). 

III. Her le i tung der verschiedenen Spektren 
a) Spektrum für cj (t) = y e~Tlt: 
Für dieses vielfach hergeleitete Spektrum wird: 

A T B cor2 A2 + B2 r2 

y 1 + (cor)2 ' y 1 + (COT)2 y2 1 + (cor)2 

A2 + B2 1 für wird 
r 

b) Herleitung des Spektrums für cj (t) = yl(r+t): 
00 

A P cos co t 
V = J r + t 

dt (Subst.: r+t = y) 
0 

cos co T Ci (co r) -f sin co r | ——— Si (cor) |r_si(coT)] 

sin co t 
T + t d t 

S i ( W T ) j ' = sin cor Ci (COT) + cos co r I — Si (cor) 

cos x sin x 
wobei Ci (x) = — da; und Si(a;) = | dar. 

x J x 
o 

[ f - Si (COT)J 
A2 + B2 I n Mithin: — = Ci2 (co r) + | — — Si (co r) 

Da für co T 1 : 
sin CO T 71 COS COT 

Ci (co T) — ; Si (co r) 

wird 

cor 
A2 + B2 

2 cor 
const 

y2 (cor)2 co2 

Man erkennt, das Spektrum von g (t) = yjt wird oo, da 
Ci (0) = —00. 

1 — er-tll c) Herleitung des Spektrums für g (t) = y 
u 

00 

M 
1 — e llT f cos co t 

cos cot dt = I rr=— d t 
Vi J Vi 

0 0 

Die einfache Weiterrechnung gibt Gl. (8a). 

Für cor < 1 wird 
A B i t A2+B2 1 
y = y " " [ : 7 > ' 

i 
d) Herleitung des Spektrums für g (t) — y Vr + t ' 

COS CO t 
\'r + t cH = (wenn t + r = z)\ 

cos co z I sin co z 
cos co T | — d z + sin co r I — d z . Vz 

Es ist: 
00 oo 
f cos CO z P 
J — ' H 

cos CO z I cos CO z 
d z — I - r d z 

= ] j J L 1 j H 

[/ 2 co [ co 

= \ 2 co ~ j 

0 

ji j cos co z d (co z) 

0 
V2 71 CO z 

Mithin = COS CO T 

4- sin co T 

C (COT ) . 

' 2 71 

B 
Analog —— - cos co r 

V - T - 1/ — C ( C O T ) [ 2 co [ co 
1/ TC_ s 

\ 2 co jI co 

1/ - _ | / l £ L s ( 0 , t ) 
y 2 co \ co 

1 / ^ - 1 / — C (COT) [ 2 co \ co 

Hieraus folgt Gl. (8b). 

Für COT < 1 wird, da S(cor)-^0; C(COT)^0, nach 
A2 + B2 1 

2 7 -
y e) Spektrum für g(t)= + <)3/a : 

Es wird diese etwas kompliziertere Funktion ge-
wählt, da für y/tzl2 das Spektrum oo wird. Zunächst 
seien die nachfolgenden zwei, später benötigten Inte-
grale berechnet, — durch partielle Integration erhält 
man: 

,3/2 da; = 2 [cos co x f sin co x 1° 
— ü — " J - f r - d , J . 

uu ^ 
j - ^ c o s c o t d t ^ ^ L . -
0 
00 

r —===== — f COS COT f 

2 (•?+»>) 

T = J 
1 — e llT (* sin cot 

sin co t dt = I ———d£ 
= 2 

Vr 

[COS COT 1 /r7tC0 1/- „, 
YR - [ / — + F2 7TCO S(C0T)J , 

sin co a; I sin co 
da; + co 

Vx~ Vx 
x 1 
— da; 

ft n 

U 
sin cot dt \ 2 co 

C s i n c o x P s i n C O T \ I TICO I R 1 

J - 2 [ - f r - + ] / — - ' ' 2 " <" c J • 

2 ( t f + c o 2 ) * s. 1. c. 5, Gl. 336, 6. 



Es ist (Substitution r + t = x): 

cos co t A__ f _ c 
V = J 0 

+ t)312 
C O S CU X 

d t — cos co r | JJ^— d x 

sin co x 
+ sin co r | —— d x , ,3/2 

B sin co t C sin co x 
y J ^T7WTdt==COSWT)^^~dX 

0 r 

— sin co r 
Also: 
A2 + B2 

' sin co r + 

für co r 1, da S («) -> 

C («) I / — - 0 ; 

cos co « 
, 3 / 2 d « . 

= T { [ C O S W T - | 

+ |̂ si 2 
2 1 

+ 1̂ 2 ttcot S (COT) 

1̂ 2 71 cor C (cor) 

3 V2 'TI 

A2 + B2 4 —> — 
y T 

14 F. O l l endor f f , Berechnung magnetischer Felder. 
Springer 1952. 

IV. A n w e n d u n g der O l l e n d o r f f - F o r m e l 
Die Ollendorff-Formel für Massekerne14 gibt die 

wirksame Permeabilität n an, wenn in das nichtferro-
magnetisclie Grundmaterial kleine ferromagnetische 
Kugeln mit dem Volumenfüllfaktor p eingebettet sind. 
Angewandt auf einen Leiter, in dessen Grundmaterial 
der Leitfähigkeit xn kugelförmige Bezirke der Leit-
fälligkeit x' = x0 + Ax' eingefügt sind, folgt: 

1 + 2 v A ft 
X 1 

1 + 1—p AK' 

Für kleine Volumenfüllfaktoren p= vges / V (vges = Ge-
samtvolumen der eingebetteten Teile) und kleine Leit-
fähigkeitserhöhungen wird 

x Ax Ax' 
= 1 + ——• -> 1 + p ; also Ax — pAx'. x0 X0 X0 

Entsteht die Leitfähigkeitserhöhung A x' der Bezirke 
durch eine erhöhte Konzentration der Ladungsträger 
A n (zur Vereinfachung sei nur eine Trägerart voraus-
gesetzt) und sind in den Bezirken erhöhter Leitfähig-
keit insgesamt AN zusätzliche Träger vorhanden, so 
wird 

AN AN 
A x' — e An = e n; mithin A x = e ——— y . 

vges V 
Somit bestimmt nur die Gesamtzahl der zusätzlichen 
beweglichen Ladungsträger, nicht deren Gruppierung, 
die wirksame Leitfähigkeitserhöhung. 

Thermodynamische Betrachtungen über die Entmischung 
in flüssigen Zweistoffsystemen 

V o n G Ü N T H E R R E H A G E 

Aus dem Institut für theoretische Hüttenkunde und physikalische Chemie 
der Technischen Hochschule Aachen 

(Z. Naturforschg. 10a, 300—317 [1955]; eingegangen am 29. November 1954) 

Ausgehend vom Phasenstabilitätskriterium werden die allgemeinen Bedingungsglei-
chungen für den kritischen Entmischungspunkt in einer binären Mischphase abgeleitet. 
Es wird der Verlauf der Stabilitätsgrenzkurve und der Koexistenzkurve am kritischen Lö-
sungspunkt sowohl im T, «-Diagramm (P = const) als auch im P, «-Diagramm (T = const) 
betrachtet. Dazu werden die ersten nicht verschwindenden Differentialquotienten der 
Stabilitätsgrenzkurve und der Koexistenzkurve am kritischen Punkt berechnet. Die 
Rechnung ergibt, daß die Koexistenzkurve und die Stabilitätsgrenzkurve in der Um-
gebung eines kritischen Punktes um so flacher verlaufen und sich von um so höherer Ord-
nung berühren, je mehr Ableitungen der molaren freien Enthalpie nach dem Molenbruch 
verschwinden. Die Krümmungen der Stabilitätsgrenze und der Koexistenzkurve am 
kritischen Punkt sind nur dann von Null verschieden, wenn der vierte Differentialquo-
tient der molaren freien Enthalpie nach dem Molenbruch nicht verschwindet. Die Krüm-
mung der Stabilitätsgrenze ist dreimal so groß wie die Krümmung der Koexistenzkurve. 
Aus den abgeleiteten Formeln folgen in einfacher Weise die notwendigen Bedingungen für 
die Existenz eines oberen bzw. unteren kritischen Lösungspunktes im T, x- und P, «-
Diagramm. Aus einigen allgemeinen empirischen Regeln werden Vorzeichenaussagen für 
die wichtigsten thermodynamischen Zusatzfunktionen an einem kritischen Punkt im 
T, «-Diagramm gewonnen. Es wird gezeigt, daß diese Vorzeichenaussagen in einem größe-
ren Bereich oberhalb und unterhalb der kritischen Temperatur für alle Konzentrationen 
gelten. Die verschiedenen Lösungstypen werden im Hinblick auf ihr Entmischungsver-
halten diskutiert. Dabei ergibt sich, daß eine athermische Lösung prinzipiell keinen kri-
tischen Entmischungspunkt besitzen kann. Mit Hilfe einiger spezieller Ansätze für die 
freie Zusatzenthalpie in niedrigmolekularen Nichtelektrolytlösungen wird der Verlauf der 
Koexistenzkurven an kritischen Punkten im T, x- und P, «-Diagramm näher untersucht. 


